RFID Card
  
Jcop Card&Java Card
bg pic Home      About Us       Products      Application      News      FAQ      Contact Us bg pic
 
Find My Card
RFID Card
- LF 125KHz Card
- HF 13.56Mhz Card
- UHF 860-960Mhz Card
- Rewritbale Surface Card
- RFID Wood Card
- Cashless Payment Systems
- RFID Blocking Cards
RFID Tag
- RFID Keyfob
- RFID Wristbands
- Animal Tag
- RFID Epoxy Keyfob
- Laundry Tag
- Anti-Metal Label
- RFID Tire Tag
- RFID Coin Tag/Disc Tag
- RFID Label With Adhesive
- Self Destructible Label
- RFID Jewelry Label
- UHF Washable Label
- Fragil Anti-tamper Label
- Fabric Laundry Tag
- Polyimide Inlay Tag
- RFID PCB Tag
- FPC RFID Inlay
- Cartoon RFID Tag
- RFID Security Seals
- Brick Tag (Wedge Tag)
- Flexible RFID Tag
- Mifare Metal Tag
UHF Anti-metal Tag
- Flexible UHF Metal Label
- High temperature Metal Tag
- FR4 UHF Metal Tag
- Mini UHF Metal Tag
- UHF Ceramic Tag
- Long Distance UHF Metal Tag
Smart Card
- Contact IC Card
- Java Card/JCOP Card
- EMTG97-3 Card
RFID Inlay
- RFID Prelam Sheet
- Large Format RFID Inlay
- HF Inlay & Antenna
- UHF Inlay & Antenna
NFC Tag
- NFC Smart Ring
RFID Reader
- OPD01 Desktop RFID Reader
- OPD02 Desktop RFID Reader
- OPD03 Desktop RFID Reader
- OPD04 Desktop RFID Reader
- OPD06 Desktop RFID Reader
- OPD07 Desktop RFID Reader
- ISO14443A Reader/Writer
- ISO15693 Reader/Writer
- ACR122U NFC Reader
- ACR38 Smart Card Reader
- OPP9918 Handheld Reader
- OPX10 Handheld Reader
- OPP101 UHF Fixed Reader
- OP401 UHF Fixed Reader
- OP801 UHF Fixed Reader
- OP1601 UHF Fixed Reader
- Industrial Tablet PC
- Industrial PDA OP9908
- 8dpi UHF RFID Reader
- 12dbi UHF RFID Reader
Plastic Card
Cleaning Card
NXP Product Overview
 
Home > RFID News > RFID Technical

Passive RFID Tag

2016-12-12 View:
The passive RFID tags do not have any power source and hence they have indistinct operational life span. The power needed for functioning is taken from the reader when the tag comes in the vicinity of the reader. They are available in a variety of sizes ranging from sizes which can fit into adhesive label. The passive RFID is basically made up of three parts: Antenna which is responsible for capturing energy and transferring the tag ID, Semiconductor chip appended to the antenna and an encapsulation which maintains the tag integrity. The encapsulation protects the antenna and chip from harsh environmental conditions. These encapsulations can be made up of small glass vial or from a laminar plastic substrate with adhesive on one side so that it can be easily attached to the goods.

Unlike an active RFID tag, passive RFID don’t have their own source of power and therefore the tag reader is responsible for powering the communication with the tag. Power can be transferred in two different ways. The first one is magnetic induction method and second is electromagnetic wave transfer method by using the EM properties related with the RF antenna i.e. the near field and the far field. The transfer of power ranges from 10µW to 1mW depending on the type of tag. So these kinds of tags are used in the cases and in items where the tags are not used again and the cost of the tag is also not important. The operating frequency ranges of Passive tags are 128 KHz, 13.6 MHz, 915 MHz, or 2.45 GHz.
 
In the Near field technique the reader passes a large amount of a.c. current through the reading coil due to which an alternating magnetic field is created in the nearby region. If a tag is placed in this region of magnetic field, then alternating voltage will appear across it. This voltage is rectified and coupled to the capacitor and a pool of charge gathers, which can be used to power the tag chip.

In the far field technique, the tag captures EM waves transmitted from the dipole antenna which is attached to the reader. The small dipole antenna receives this energy in the form of alternating potential difference that appears across the arms of the dipole. After the rectification it is linked to the capacitor which results in accumulation of energy in order to supply power to the tags.

There can be one more method to transmit the signal from the tag that is when passive RFID tag stores the energy of the signal from the reader in an onboard capacitor. The tag uses the energy of the capacitor when it is fully charged.
 
The passive tags can be used in forming the identification cards for building access, credit cards, identity cards, bus fares, on the purchasable items etc where just a small tag of size as small as quarter is required to fulfill the needs and the reader reads the information from the tags and supply us the information of the items that are stored in the tags.

 
     
        Copyright | Privacy Statement | RFID Solution | RFID Knowledge | RFID products Shop | Sitemap
German Spanish French Greek Italia Japanese Dutch Polish Portuguese Russian English facebook googleplus twitter
        A smart card is a small plastic card containing a computer chip. People use smart cards along with personal identification numbers (PINs) to log on to a network, a computer, or a device. Using a smart card is more secure than using a password because it's more difficult for someone to steal a smart card and learn your PIN than to learn your password.Smart cards are generally issued by information technology (IT) departments in large organizations. To use a smart card, you also need a smart card reader—a device that’s installed in or connected to your computer and that can read the information stored on a smart card.